Investigation of intersubband transitions In wide bandgap oxide
guantum well structures for optoelectronic device applications
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MOTIVATION SIMULATION RESULTS

d There is a growing Interest in wide bandgap oxides like ZnO, MgO,
Ga, 05, etc. [1], [2].

d These materials possess unique properties suitable for high-
performance optoelectronic devices in sensing, communications, and
iImaging applications.

d Ga,05; has a wide bandgap energy of about 4.8 to 4.9 eV, making it
transparent to UV radiation and opague to visible light [3].

d ZnO exhibits exceptional optical and electrical properties, including a
high exciton binding energy and substantial oscillator strength [4].

d Intersubband transitions in multiple guantum well (MQW) structures hold :
promise for efficient light absorption and emission in the mid-infrared to ‘
terahertz spectral range.

d The study aims to numerically simulate the absorption spectra of wide
bandgap oxide MQW structures, focusing on the light-matter interaction
where the dominant many-body contribution is the depolarization field.

THEORETICAL MODEL

d We study a multiple guantum well design, focusing on Mg, Zn,_,0 /Zn0O
and (Al;Ga,_),0/ Ga,05; materials. The results of our numerical
simulations are absorption profiles for these material systems.

Schematic diagram of the electronic structure of MQWs
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d 1D effective mass Schrddinger equation:
hz d 1 dl/)l(Z)
2 dzm*(z) dz

Ueff(Z) = U(2) —ep(z) + Uy (2) — eF,z
4 U, Is the local exchange correlation potential:
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 For the electrostatic potential, the Poisson equation reads:

n() =) Nli@)I?,

e B S

—

/. S

1 | 1 L
250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Energy [meV] Energy [meV]

Varying the percentage of Mg Varying the percentage of Al

” x=0.1

x=0.2
x=0.3 i
x=04

—x = 0.5

x=0.1
x=0.2
x=0.3
x=04
x=0.5
x=0.6

A\

/
4 /,\/ \

200 80 100 1 20 140 1 60 1 80 200 220 240 260
Energy [meV] Energy [meV]

dZ
P = (1)~ Na(@)),

o
o)}

ot
w»

x=0.6
x=0.7

Me:koT Er—E;(0)
LR (1 +e kBT )
mTh?

o
(o4}
T

Ns,i —

©
~

o
(@)
T

o
w

Absorption (arb. units)

d The single particle absorption coefficient is [5]:

Absorption (arb. units)
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a2D,s(w) = Cs 2 faANgG(w — Wy )

d The Hamiltonian describing the intersubband plasmon: _ _ _
 The layer sequence in nm, starting from the left barrier reads:

3/3.1/2.5/2.4/3.4/5.5/3. The widest well is uniformly dopped with
n=30 x 1038¥cm3

O The electronic structure is calculated at applied field of F= 7.3 x 1062
m
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d The coupling due to dipole-dipole Coulomb interaction is described by the coupling

strength:
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d The new N frequency W), can be calculated by dlagonallzmg the following 2N x 2N
matrix: —
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d Absorption can be calculated by integrating all the current densities associated
with different multisubband plasmons:
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